3,248 research outputs found

    SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last five years large online resources of human variability have appeared, notably HapMap, Perlegen and the CEPH foundation. These databases of genotypes with population information act as catalogues of human diversity, and are widely used as reference sources for population genetics studies. Although many useful conclusions may be extracted by querying databases individually, the lack of flexibility for combining data from within and between each database does not allow the calculation of key population variability statistics.</p> <p>Results</p> <p>We have developed a novel tool for accessing and combining large-scale genomic databases of single nucleotide polymorphisms (SNPs) in widespread use in human population genetics: SPSmart (SNPs for Population Studies). A fast pipeline creates and maintains a data mart from the most commonly accessed databases of genotypes containing population information: data is mined, summarized into the standard statistical reference indices, and stored into a relational database that currently handles as many as 4 × 10<sup>9 </sup>genotypes and that can be easily extended to new database initiatives. We have also built a web interface to the data mart that allows the browsing of underlying data indexed by population and the combining of populations, allowing intuitive and straightforward comparison of population groups. All the information served is optimized for web display, and most of the computations are already pre-processed in the data mart to speed up the data browsing and any computational treatment requested.</p> <p>Conclusion</p> <p>In practice, SPSmart allows populations to be combined into user-defined groups, while multiple databases can be accessed and compared in a few simple steps from a single query. It performs the queries rapidly and gives straightforward graphical summaries of SNP population variability through visual inspection of allele frequencies outlined in standard pie-chart format. In addition, full numerical description of the data is output in statistical results panels that include common population genetics metrics such as heterozygosity, <it>Fst </it>and <it>In</it>.</p

    A teach-discover-treat application of ZincPharmer: An online interactive pharmacophore modeling and virtual screening tool

    Get PDF
    The 2012 Teach-Discover-Treat (TDT) community-wide experiment provided a unique opportunity to test prospective virtual screening protocols targeting the anti-malarial target dihydroorotate dehydrogenase (DHODH). Facilitated by ZincPharmer, an open access online interactive pharmacophore search of the ZINC database, the experience resulted in the development of a novel classification scheme that successfully predicted the bound structure of a non-triazolopyrimidine inhibitor, as well as an overall hit rate of 27% of tested active compounds from multiple novel chemical scaffolds. The general approach entailed exhaustively building and screening sparse pharmacophore models comprising of a minimum of three features for each bound ligand in all available DHODH co-crystals and iteratively adding features that increased the number of known binders returned by the query. Collectively, the TDT experiment provided a unique opportunity to teach computational methods of drug discovery, develop innovative methodologies and prospectively discover new compounds active against DHODH. Copyright

    Straightforward Inference of Ancestry and Admixture Proportions through Ancestry-Informative Insertion Deletion Multiplexing

    Get PDF
    Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies

    In vivo imaging of glycol chitosan-based nanogel biodistribution

    Get PDF
    The preclinical development of nanomedicines raises several challenges and requires a comprehensive characterization. Among them is the evaluation of the biodistribution following systemic administration. In previous work, the biocompatibility and in vitro targeting ability of a glycol chitosan (GC) based nanogel have been validated. In the present study, its biodistribution in the mice is assessed, using near-infrared (NIR) fluorescence imaging as a tool to track the nanogel over time, after intravenous administration. Rapid whole body biodistribution of both Cy5.5 labeled GC nanogel and free polymer is found at early times. It remains widespreadly distributed in the body at least up to 6 h postinjection and its concentration then decreases drastically after 24 h. Nanogel blood circulation half-life lies around 2 h with the free linear GC polymer presenting lower blood clearance rate. After 24 h, the blood NIR fluorescence intensity associated with both samples decreases to insignificant values. NIR imaging of the organs shows that the nanogel had a body clearance time of 48 h, because at this time point a weak signal of NIR fluorescence is observed only in the kidneys. Hereupon it can be concluded that the engineered GC nanogel has a fairly long blood circulation time, suitable for biomedical applications, namely, drug delivery, simultaneously allowing efficient and quick body clearance.Acknowledgements: The authors thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), and the Project “BioHealth— Biotechnology and Bioengineering approaches to improve health quality,” Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. The authors also thank António Temudo, Dolores Bonaparte, and Sílvia Santos Pedrosa for the support on in vivo assays. Paula Pereira acknowledges FCT for the PhD grant SFRH/ BD/64977/2009

    Occupational illnesses in the 2009 Zambian labour force survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Occupational health has received limited research attention in the Southern African Development Community (SADC). Much of the published data in this region come from South Africa and little has been reported north of the Limpopo. The present study was conducted to estimate the burden of occupational illnesses in Zambia and assess factors associated with their occurrence.</p> <p>Methods</p> <p>Data were obtained from the Zambian Labour Force Survey of 2009. Frequencies were used to estimate the prevalence of occupational diseases. Logistic regression analyses were conducted to determine the associations between demographic, social and economic factors and reported illness resulting from occupational exposures. Odds ratios (OR) from bivariate analyses and adjusted odds ratios (AOR) from the multivariate analysis together with their 95% Confidence Intervals (CI) are reported.</p> <p>Results</p> <p>Data on 59,118 persons aged 18 years or older were available for analysis, of which 29805 (50.4%) were males. The proportions of the sample that reported to have suffered from an occupational illness were 12.7% among males and 10.4% among females (p < 0.001). Overall the proportions of respondents who reported suffering from fatigue, fever and chest infections were 38.8%, 21.7% and 17.1%, respectively. About two thirds (69.7%) of the study participants had stayed away from work due to the illness suffered at work; there was no sex differences (p = 0.216). Older age, being male, lower education level, married/cohabiting or once married (separated/divorced/widowed), and paid employee or employer/self employed were positively associated with having suffered from illness.</p> <p>Conclusions</p> <p>The findings from this study call for urgent effort for specific measures to prevent and mitigate the effects of occupational injuries. These interventions may include: public health campaigns, enforcement or change in work policies and regulations. Special attention may have to be made towards those who were more likely to suffer from occupational illnesses.</p

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets
    corecore